• Home   /  
  • Archive by category "1"

Halophila Ovalis Descriptive Essay

Abstract

Although seagrass species in the genus Halophila are generally distributed in tropical or subtropical regions, H. nipponica has been reported to occur in temperate coastal waters of the northwestern Pacific. Because H. nipponica occurs only in the warm temperate areas influenced by the Kuroshio Current and shows a tropical seasonal growth pattern, such as severely restricted growth in low water temperatures, it was hypothesized that this temperate Halophila species diverged from tropical species in the relatively recent evolutionary past. We used a phylogenetic analysis of internal transcribed spacer (ITS) regions to examine the genetic variability and evolutionary trend of H. nipponica. ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed very low sequence divergence (less than 3-base pair, bp, difference), confirming that H. nipponica from Japan and Korea are the same species. Halophila species in the section Halophila, which have simple phyllotaxy (a pair of petiolate leaves at the rhizome node), were separated into five well-supported clades by maximum parsimony analysis. H. nipponica grouped with H. okinawensis and H. gaudichaudii from the subtropical regions in the same clade, the latter two species having quite low ITS sequence divergence from H. nipponica (7–15-bp). H. nipponica in Clade I diverged 2.95 ± 1.08 million years ago from species in Clade II, which includes H. ovalis. According to geographical distribution and genetic similarity, H. nipponica appears to have diverged from a tropical species like H. ovalis and adapted to warm temperate environments. The results of divergence time estimates suggest that the temperate H. nipponica is an older species than the subtropical H. okinawensis and H. gaudichaudii and they may have different evolutionary histories.

Citation: Kim YK, Kim SH, Yi JM, Kang C-K, Short F, Lee K-S (2017) Genetic identification and evolutionary trends of the seagrass Halophila nipponica in temperate coastal waters of Korea. PLoS ONE 12(5): e0177772. https://doi.org/10.1371/journal.pone.0177772

Editor: Genlou Sun, Saint Mary's University, CANADA

Received: August 11, 2016; Accepted: May 3, 2017; Published: May 15, 2017

Copyright: © 2017 Kim et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the paper and its Supporting Information files.

Funding: This study was supported by the Ministry of Oceans and Fisheries, Korea (Project title: Long-term changes in structure and function in the marine ecosystems of Korea) to KSL and CKK, Pusan National University to KSL, and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST; NRF–2015R1A2A2A01004850) to KSL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Seagrasses are a polyphyletic group of monocotyledonous angiosperms that evolved in the marine environment approximately 100 million years ago (Mya) [1–4]. Seagrasses have adapted successfully to marine environments and play important roles in coastal and estuarine ecosystems, providing food, habitat, and shelter to a wide variety of marine animals [5–7]. Although seagrasses are distributed in nearly all coastal areas of the world, the global species diversity of seagrasses is extremely low (approximately 72 species) compared to terrestrial angiosperms [8–10].

Seagrasses can adapt to either tropical or temperate thermal regimes. There is roughly the same number of temperate and tropical genera and species, while a few genera and species occur in both climate zones [9]. The marine members of the family Hydrocharitaceae, which includes the seagrass genera Enhalus, Thalassia, and Halophila, do not usually occur where minimum temperatures are less than 20°C [11,12], and consequently the genera in this family have been considered largely tropical [9,13]. Although most Halophila species occur in tropical or subtropical regions, some Halophila species such as H. australis are distributed in temperate regions [13]. H. nipponica also occurs in warm temperate areas of the northwestern Pacific [14–17].

H. nipponica was first observed in temperate regions of the Japanese archipelago approximately 100 years ago, and was subsequently treated as H. ovalis because species classification and identification in the genus Halophila are controversial due to morphological similarity and variability [1,12,14,18]. This temperate Halophila species was described as a new species, H. nipponica, in 2006 based on morphology [14]. In the same year, H. japonica was described using both morphology and genetics [19]; subsequently, H. japonica was treated as a synonym of H. nipponica [15]. The first observation of H. nipponica on the southern coast of the Korean peninsula occurred in 2007, with its identification based on morphology [16]. Since then, many meadows of H. nipponica have been observed along the warm southern coast of Korea [17]. H. nipponica is now known to be widely distributed in warm temperate Korean and Japanese waters, and considered endemic to Korea and Japan [15,16]. Since H. nipponica occurs in temperate coastal waters of the northwestern Pacific, but is not present in the tropical west Pacific and Indian Oceans, this species has been considered a temperate-adapted Halophila species [14,16]. However, growth of H. nipponica is minimal at water temperature less than 15°C, and no growth reduction in high summer water temperature was observed, implying that this species still possess a tropical seasonal growth pattern [17].

The genus Halophila contains approximately 20 species and consists of five sections, a taxonomic rank between the genus and the species, based on morphological differences [10,13,14]. Most species in the genus Halophila are in section Halophila, which contains species with a pair of petiolate leaves borne on short erect lateral shoots [13,14]. All other species are in the sections Microhalophila (H. beccarii), Spinulosae (H. spinulosa), Tricostata (H. tricostata), and Americanae (H. engelmannii and H. baillonis) [13]. Although identification of Halophila species has been established by various taxonomic studies [14], molecular genetic studies proposed that Halophila species such as H. johnsonii and H. hawaiiana should be treated as conspecific with H. ovalis [20,21]. Therefore, further taxonomic and molecular genetic studies are required for more accurate species classification of the genus Halophila.

The internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) is phylogenetically informative and useful in understanding the evolutionary and biogeographic relationships among closely related taxa [3,15,20–25]. DNA sequences of the ITS region evolve rapidly and may vary among species within a genus or among populations of the same species [23,24,26,27]. Phylogenetic analyses of the ITS region of nrDNA have been conducted to investigate the taxonomic status and to infer biogeographic trends in the genus Halophila, suggesting that a molecular phylogenetic study of this region is useful to differentiate major taxonomic groups within the genus Halophila [3,15,20,21,25]. In this study, we conducted a phylogenetic analysis of the ITS region of nrDNA to assess genetic variability among H. nipponica collected from populations across its known range in Korean and Japanese coastal waters and to elucidate position of the species H. nipponica among the taxonomic groups of the genus Halophila. The evolutionary trend of H. nipponica was inferred using DNA sequences of the ITS region from all assessed Halophila species.

Materials and methods

Locations of Halophila nipponica and plant sample collection

H. nipponica is found on the southern coast of Korea and in temperate coastal waters of the Japanese archipelago with the exception of Hokkaido, the northernmost island of Japan (Fig 1). H. nipponica shoots were collected for DNA extraction from five seagrass meadows on the southern coast of Korea at 5-m intervals using SCUBA (Fig 1). Fifty-four H. nipponica samples, including 20 from An-do Island (HN01–HN20), 8 from Sorok-do Island (HN21–HN28), 12 from Namhae Island (HN31–HN42), 10 from Koje Island (HN51–HN60), and 4 from Geomun-do Island (HN61–HN64), were collected for sequencing of ITS regions (Table 1). Plant samples of H. ovalis (n = 3) and H. minor (n = 3) were collected in Trang, Thailand. No specific permissions to collect research samples were required at the study sites, and the field study did not involve endangered or protected species. After collection, samples were cleaned with distilled water, desiccated, and stored at room temperature in silica gel for later DNA extraction. Portions of each collection were preserved as herbarium voucher specimens, and deposited in the lab and the Herbarium of Kyungpook National University.

Table 1. Collection information and GenBank accession numbers of Halophila nipponica specimens used for phylogenetic analysis from various geographical locations in the temperate coastal waters of northeast Asia.

https://doi.org/10.1371/journal.pone.0177772.t001

DNA extraction, PCR, and sequencing

Dried leaf tissue was ground in liquid nitrogen, and then genomic DNA was extracted using a DNeasy plant mini-kit (Qiagen, Valencia, USA), following the manufacturer’s protocol. DNA extraction was checked using 1.5% agarose gel electrophoresis followed by ethidium bromide staining. Concentrations of genomic DNA were quantified using a NanoDrop (ND-1000) spectrophotometer.

Internal transcribed spacer (ITS) sequences in the nuclear ribosomal DNA (nrDNA), ITS-1, 5.8S nrDNA, and ITS-2, were amplified using the primer pairs ITS-1 (forward) and ITS-4 (reverse). All PCR reactions were performed using a PTC-100 thermal cycler (Bio-Rad, USA). The amplifications were done using QIAGEN Taq polymerase mixed manually with 10× PCR buffer, MgCl2, and dNTPs. The thermal cycling conditions were composed of an initial denaturation step at 94°C for 2 min, then 35 cycles at 94°C for 1 min, 50°C for 1 min, 72°C for 2 min, and a final extension time of 10 min at 72°C. The annealing process was conducted for 1 min at 50°C. PCR products were separated by 1.5% agarose gel electrophoresis followed by staining with ethidium bromide. Bands were excised from the agarose gel and purified using a QIAQuick Gel Purification kit (QIAGEN). DNA sequencing reactions were performed using ABI BigDye Terminator v3.1 cycle sequencing kits following the manufacturer’s protocol. DNA sequences were obtained from an ABI 3730xl DNA analyzer.

Molecular analysis of ITS sequences of Halophila species

ITS sequences of Halophila species obtained in this study have been submitted to GenBank (http://www.ncbi.nlm.nih.gov/genbank/), and accession numbers were presented in Table 1 and S1 Table. Nucleotide sequence analyses were performed using BioEdit (Ver. 7.1.3) software for sequence compilation and alignment. Gaps were treated as missing data. Additional ITS sequences of H. nipponica from Japan and other Halophila species were obtained from the NCBI/GenBank database and included in the alignment (S1 Table). Approximately 130 ITS sequences of Halophila species were retrieved from the NCBI/GenBank database. Identical ITS sequences of the same species at adjacent geographical locations were excluded, and the remaining 47 ITS sequences were included in the alignment to analyze phylogenetic relationships among species of the genus Halophila.

A maximum parsimony (MP) tree of ITS regions was obtained using the MEGA 5.1 program [28]. Neighbor-joining (NJ) analysis was performed using the maximum composite likelihood model with 1000 bootstrap replications [29]. The topologies of the phylogenetic trees from the MP and NJ analyses were almost identical, except for differences in bootstrap support values at some nodes. Thus, phylogenetic results from only the MP analysis are presented in this study. In the MP analysis, heuristic searches were performed with the Tree-Bisection-Reconnection (TBR) branch-swapping algorithm. Support for the nodes of the MP tree was determined by calculating bootstrap values based on 1000 replications. Mean similarities between clades, and between species within clades, were calculated using the Kimura 2-parameter model and the numbers of sequence differences were counted using the estimation of pairwise distance model in the MEGA 5.1 program [30].

Relative divergence times of the clades in section Halophila, in which all species have a pair of petiolate leaves at each rhizome node, were estimated based on ITS sequence divergence to understand the evolutionary trend of H. nipponica using NETWORK 4.6 (http://www.fluxus-engineering.com/sharenet.htm) software. Relative divergence times of morphologically similar Halophila species to H. nipponica such as H. okinawensis, H. gaudichaudii, and H. ovalis were also estimated based on ITS sequence divergence. To obtain estimates of the timing of divergence among Halophila species based on ITS sequences, we employed a consensus approach for ITS sequence diversity. Values between 1.72 × 10−9 and 1.71 × 10−8 mutations/site/year, which have been used as the range for ITS mutation rates in herbaceous plants, were employed as nucleotide mutation rates [31,32].

Results

Phylogenetic position of Halophila nipponica

Halophila species in section Halophila were separated into five well-supported clades with 87–100% bootstrap support in the MP analysis (Fig 2). H. nipponica was grouped with H. okinawensis and H. gaudichaudii from subtropical regions into Clade I of section Halophila with 99% bootstrap support (Fig 2). In Clade I, H. nipponica and H. okinawensis were separated from H. gaudichaudii, and all H. nipponica samples from the Korean and Japanese coastal waters were included in a subgroup of Clade I (Fig 2). Clade II of section Halophila was a well-supported group (95% bootstrap value) including H. ovalis, H. hawaiiana, H. johnsonii, and H. minor (Fig 2). Species within Clade II were further split into two subgroups, with H. johnsonii falling outside these subgroups. One subgroup included H. minor from Thailand and H. ovalis from Japan, Malaysia, Vietnam, and Thailand. The other subgroup consisted of H. hawaiiana from Hawaii, H. minor from Indonesia, and H. ovalis from Australia and Indonesia. H. minor and H. ovalis within Clade II were separated by geographical location rather than by species, with one group from Japan, Thailand, Malaysia, and Vietnam and the other group from Indonesia and Australia. Clade III, which received 99% bootstrap support in the MP analysis, consisted of H. major (previously known as H. euphlebia), H. mikii from Japan, H. australis from Australia, and H. ovalis from Australia and the Philippines (Fig 2). H. decipiens and H. stipulacea formed well-supported monophyletic groups, which received 100% bootstrap support in the MP analysis (Fig 2). Clade IV consisted of the single species, H. stipulacea, and Clade V consisted of the single species, H. decipiens. Although H. decipiens has a wide distributional range in tropical and subtropical waters, separation by geographical location was not supported by ITS sequence analysis (Fig 2).

Fig 2. Phylogenetic tree of Halophila species inferred from maximum parsimony analysis using 655 base pairs of nrDNA including ITS1, 5.8S rDNA, and ITS2.

Bootstrap support values above 50% are shown on branches.

https://doi.org/10.1371/journal.pone.0177772.g002

Halophila species which have complex phyllotaxy (H. engelmannii, H. beccarii, H. spinulosa, and H. tricostata) were clearly separated from species with simple phyllotaxy in section Halophila, except for one sample of H. australis (AB436923), in the phylogenetic tree (Fig 2). H. spinulosa and H. tricostata were grouped with 100% bootstrap support in the MP analysis and the group of H. beccarii and H. engelmannii was also supported well, with a bootstrap value of 99% (Fig 2).

ITS sequence similarity of Halophila nipponica

Similarities of ITS sequences among the five clades of section Halophila ranged from 91.7 to 95.9% (Table 2). Clade I, which includes H. nipponica, had the greatest similarity to Clade II, which includes H. ovalis, and the lowest similarity to Clade IV, which consists of a single species, H. stipulacea (Table 2). Divergence of ITS sequences among species in section Halophila occurred primarily in the ITS-1 and ITS-2 regions, while only three polymorphic sites were found in the 5.8S region among the species analyzed (S1 Fig). Among the Halophila species in Clade I (H. nipponica, H. okinawensis, and H. gaudichaudii), five and nine polymorphic sites, which were mostly C/T mutations, were found in the ITS-1 and ITS-2 regions, respectively (S1 Fig).

ITS sequences of H. nipponica from various locations in Korea and Japan were identical or showed less than 0.5% sequence divergence (3-bp difference) (Fig 3; S2 Table). ITS sequences of H. nipponica showed 1.1–1.6% sequence divergence (98.4–98.9% sequence similarity; 7–10-bp difference) from those of H. okinawensis from Japan and 2.1–2.5% sequence divergence (97.6–97.9% similarity; 13–15-bp difference) from that of H. gaudichaudii from Guam (Fig 3; S2 Table). H. nipponica also showed relatively high sequence similarity in the ITS region to Halophila species in Clade II (S2 Table). H. nipponica showed ITS sequence similarity of 95.2–95.5% to H. minor, 95.0–95.5% to H. hawaiiana, and 95.7–96.0% to H. johnsonii (S2 Table). ITS sequences of H. nipponica usually showed higher than 94.9% sequence similarity to those of H. ovalis, except H. ovalis from Vietnam in Clade II and from Australia and Philippines in Clade III (Fig 3; S2 Table). H. major from the tropical/subtropical Indo-Pacific showed ITS sequence similarity of 93.6–93.9% to H. nipponica. However, H. decipiens from the tropical/subtropical Indo-Pacific in Clade V showed relatively low ITS sequence similarity (91.8–92.0%) to H. nipponica (Fig 3).

Relative divergence times of Halophila species

Clades IV and V, which each consisted of a single species, showed more recent relative divergence times than Clades I, II, and III, which each consisted of several Halophila species (Fig 4A). Relative divergence times for Clade I, including H. nipponica, and Clade II, including H. ovalis, were 2.3 ± 0.6 and 3.5 ± 1.0 Mya, respectively (Fig 4A). H. okinawensis and H. gaudichaudii were the youngest species (1.5 ± 0.68 Mya) in Clade I (Fig 4B). Divergence times for H. nipponica and H. ovalis were 2.9 ± 1.08 and 8.7 ± 1.99 Mya, respectively (Fig 4B).

Fig 4. Relative divergence time estimates of five clades in the section Halophila (A), and the Halophila species (H. nipponica, H. okinawensis, and H. gaudichaudii) in Clade I and H. ovalis in Clade II (B).

Relative divergence time was estimated by ITS sequence diversity using the NETWORK 4.6 program. Values are mean ± SD.

https://doi.org/10.1371/journal.pone.0177772.g004

Discussion

Genetic variability in Halophila nipponica

Populations of H. nipponica have been reported only in the warm temperate coastal waters of Korea and Japan [10,14–16]. When H. nipponica was described as a new species, this species was considered endemic to Japan [14]. Recently, many H. nipponica meadows have been observed in the coastal waters of Korea [16,17], but no studies on taxonomic or genetic similarities have been conducted between the populations of H. nipponica in Japan and Korea. In the present study, ITS sequences of H. nipponica plants from various locations across its geographic range in the coastal waters of Korea and Japan were identical or showed very low divergence (less than 3-bp difference). Divergence of ITS sequences within H. nipponica is much lower than the interspecific divergence (3.0–28.5%; 18–172-bp difference) found among other Halophila species [15,19,25]. Additionally, all H. nipponica collections from various locations in Korea and Japan were included in a group, and well separated from other Halophila species in the MP analysis. These phylogenetic results using ITS sequences suggest that H. nipponica is distinct from other Halophila species. Additionally, H. nipponica from Korea and Japan are confirmed to be the same species, and have nearly identical ITS sequences (0–3-bp difference).

In this study, Halophila species in the section Halophila were clearly separated from the species in other sections by molecular phylogenetic analysis of ITS sequences, and were grouped into five monophyletic clades. Historically, H. nipponica, H. okinawensis, and H. gaudichaudii were described morphologically as separate species on the basis of leaf dimensions [14]. Subsequently, H. nipponica grouped with H. okinawensis and H. gaudichaudii because of relatively high ITS sequence similarity and these three seagrasses were considered conspecific [15]. However, in our study of these species, including new samples collected throughout its current known range, H. nipponica has higher genetic similarity among all samples (≤ 3-bp) than it does to either H. okinawensis (7–10-bp) or H. gaudichaudii (13–15-bp) (S2 Table). ITS sequence divergence of 0–9-bp (0–1.45%) has been considered the level of intraspecific variation for Halophila species [15,25,33]. Additionally, H. nipponica, H. okinawensis, and H. gaudichaudii were well separated into 3 groups in the MP analysis. Thus, these 3 Halophila species should be considered distinct taxa at either the specific or subspecific level.

H. okinawensis and H. gaudichaudii occur in the subtropical region of the western Pacific, whereas H. nipponica occurs only in the warm temperate region of the northwestern Pacific [14–16]. H. okinawensis and H. gaudichaudii are located in the intermediate region between the tropical Indo-Pacific where tropical Halophila species occur and the temperate northwestern Pacific where H. nipponica occurs. Thus, these subtropical Halophila species appear to have spread from the tropical Indo-Pacific region due to the influence of the warm Kuroshio Current [14,34].

Evolutionary trend of Halophila nipponica

Halophila species in Clade I (H. nipponica, H. okinawensis, and H. gaudichaudii) showed the highest ITS sequence similarity with the tropical/subtropical Halophila species in Clade II such as H. ovalis, H. minor, H. hawaiiana, and H. johnsonii. H. hawaiiana, and H. johnsonii in Clade II occur only in the restricted areas and could not be distinguished from H. ovalis according to many molecular approaches to the identification of Halophila species [20,21]. Thus, we suggest that the temperate and subtropical Halophila species in Clade I probably have diverged from the tropical H. ovalis in Clade II. The trend of ITS sequence similarities among the tropical H. ovalis, the subtropical H. okinawensis and H. gaudichaudii, and the temperate H. nipponica was well matched with the geographical distributions of these Halophila species (Fig 3). Halophila species, which are more closely distributed geographically with H. nipponica, usually showed higher genetic similarity with this species. These four Halophila species from the tropical, subtropical, and temperate regions are quite similar morphologically [14,15], but we found H. nipponica to be genetically distinct from H. ovalis as well as from H. gaudichaudii and H. okinawensis according to the ITS sequence analysis.

Although H. nipponica is distributed in the Temperate North Pacific Bioregion in which the temperate seagrass genera Zostera, Phyllospadix, and Ruppia are dominant, it occurs primarily near the boundary of the Tropical Indo-Pacific Bioregion in which Halophila species are common [9]. Thus, propagules of Halophila species in the tropical/subtropical Indo-Pacific may travel easily to the temperate coastal waters of Korea and Japan via the warm Kuroshio Current. H. nipponica is quite similar morphologically to H. ovalis, and this species was treated as H. ovalis previously [14,19]. Among the Halophila species in the tropical Indo-Pacific, H. ovalis appears to be the most similar species to H. nipponica both morphologically and genetically [14,15]. Based on phylogenetic analysis and latitudinal distribution, Halophila species (H. nipponica, H. okinawensis, and H. gaudichaudii) within Clade I appear to have diverged from H. ovalis in tropical Indo-Pacific waters.

Because H. okinawensis and H. gaudichaudii occur in subtropical regions, these species might be expected to be intermediate species between the tropical H. ovalis and the temperate H. nipponica from an evolutionary perspective. However, according to divergence time estimates, H. nipponica diverged from H. ovalis earlier (2.9 Mya) than H. okinawensis and H. gaudichaudii (1.5 Mya). Thus, the subtropical H. okinawensis and H. gaudichaudii are younger species than the temperate H. nipponica. This result suggests that the temperate H. nipponica have not diverged from the subtropical Halophila species and the temperate H. nipponica and the subtropical H. okinawensis and H. gaudichaudii may have different evolutionary histories. There is limited information available on ITS sequences of H. okinawensis and H. gaudichaudii, which causes difficulty in the accurate estimation of the divergence times among these species. Thus, further genetic studies of H. nipponica, H. okinawensis, and H. gaudichaudii are required to better understand the evolutionary relationships between these Halophila species. Recently, rbcL and matK sequences have been used for the identification of the common and widespread Halophila species such as H. ovalis and H. decipiens [35–37]. Analysis of these additional genetic sequences will provide invaluable information on the species identification and evolution of Halophila species.

In conclusion, H. nipponica plants from the various locations in temperate coastal waters of the northwestern Pacific were nearly genetically identical based on ITS sequences. H. nipponica from the temperate regions of Korea and Japan was grouped with H. okinawensis and H. gaudichaudii from the subtropical regions of the western Pacific in Clade I. These temperate and subtropical Halophila species in Clade I showed high ITS sequence similarity to the tropical H. ovalis in Clade II. Based on geographical distribution and similarities in genetics and morphology, H. nipponica is suggested to have diverged from a tropical Halophila species such as H. ovalis, which was transported from the tropical Indo-Pacific via Pacific Ocean circulation and then adapted to warm temperate environments. According to divergence time estimates, the temperate H. nipponica was considered an older species than the subtropical H. okinawensis and H. gaudichaudii and may have a different evolutionary history with the subtropical Halophila species.

Supporting information

S1 Fig. ITS sequence alignments of Halophila species within section Halophila.

The ITS region is composed of the ITS1 (1–225 bp), 5.8S (226–387 bp), and ITS2 (388–631 bp) regions. In ITS sequences of Halophila species within the section Halophila, the major sequence differences occurred in the ITS1 and ITS2 regions, whereas few sequence differences were found in the 5.8S region.

https://doi.org/10.1371/journal.pone.0177772.s001

(DOCX)

S2 Table. Similarities (%) and the number of differences in ITS sequences among Halophila species within Clade I (box) and Clade II.

Bold numbers indicate the species H. nipponica. Values above the dashed diagonal represent the number of ITS sequence differences, while those below the diagonal represent similarities among Halophila species in Clade I and Clade II.

https://doi.org/10.1371/journal.pone.0177772.s003

(DOC)

Acknowledgments

We thank HJ Song, JH Kim, SR Park, MJ Kim, HG Kim, S Zhaxi, and OJ Kwon for their many hours of field and lab assistance.

Author Contributions

  1. Conceptualization: KSL YKK.
  2. Data curation: KSL YKK.
  3. Formal analysis: YKK JMY.
  4. Funding acquisition: KSL CKK.
  5. Investigation: KSL YKK SHK.
  6. Methodology: YKK JMY.
  7. Project administration: KSL YKK.
  8. Resources: YKK SHK.
  9. Software: YKK JMY.
  10. Supervision: KSL.
  11. Validation: KSL YKK JMY.
  12. Visualization: KSL YKK JMY.
  13. Writing – original draft: KSL YKK CKK FS.
  14. Writing – review & editing: KSL YKK CKK FS.

References

  1. 1. den Hartog C. The sea-grasses of the World. North-Holland, Amsterdam; 1970.
  2. 2. Les DH, Cleland MA, Waycott M. Phylogenetic studies in Alismatidae, II: Evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot. 1997; 22: 443–463.
  3. 3. Waycott M, Procaccini G, Les DH, Reusch TBH. Seagrass evolution, Ecology and Conservation: a genetic perspective. In: Larkum AWD, Orth RJ, Duarte CM, editors. Seagrasses: Biology, Ecology and Conservation. Springer, the Netherland; 2006. pp. 25–50.
  4. 4. Wissler L, Codoñer FM, Gu J, Reusch TBH, Olsen JL, Procaccini G, et al. Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life. BMC Evol Biol. 2011; 11: 8. pmid:21226908
  5. 5. McRoy CP, McMillan C. Production ecology and physiology of seagrasses. In: McRoy CP, Helfferich C, editors. Seagrass ecosystems: a scientific perspective. Dekker, New York; 1997. pp. 53–81.
  6. 6. West TJ, Jacobs NE, Roberts DE. Experimental transplanting of seagrasses in Botany Bay, Australia. Mar Pollut Bull. 1990; 21: 197–203.
  7. 7. Gillander BM. Seagrasses, fish, and fisheries. In: Larkum AWD, Orth RJ, Duarte CM, editors. Seagrass: Biology, Ecology and Conservation. Springer, The Netherlands; 2006. pp. 503–536.
  8. 8. Short FT, Cole RG, Pergent-Martini C. Global seagrass distribution. In: Short FT, Cole RG, editors. Global seagrass research methods. Elsevier, Amsterdam, The Netherlands; 2001. pp. 5–30.
  9. 9. Short FT, Dennison WC, Carruthers TJB, Waycott M. Global seagrass distribution and diversity: a bioregional model. J Exp Mar Biol Ecol. 2007; 350: 3–20.
  10. 10. Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, et al. Extinction risk assessment of the world’s seagrass species. Biol Conserv. 2011; 144: 1961–1971.
  11. 11. Setchell WA. Geographical distribution of the marine Spermatophytes. Bull Torrey Botanical Club. 1920; 47: 563–579.
  12. 12. Miki S. On the seagrasses in Japan II. Cymodoceaceae and marine Hydrocharitaceae. Bot Mag Tokyo. 1934; 48: 131–142.
  13. 13. den Hartog C, Kuo J. Taxonomy and biogeography of seagrasses. In: Larkum AWD, Orth RJ, Duarte CM, editors. Seagrasses: Biology, Ecology and Conservation. Springer, the Netherland; 2006. pp. 1–23.
  14. 14. Kuo J, Kanamoto Z, Iizumi H, Mukai H. Seagrasses of the Genus Halophila Thouars (Hydrocharitaceae) from Japan. Acta Phytotax Geobot. 2006; 57: 129–154.
  15. 15. Uchimura M, Faye EJ, Shimada S, Inoue T, Nakamura Y. A reassessment of Halophila species (Hydrocharitaceae) diversity with special reference to Japanese representatives. Bot Mar. 2008; 51: 258–268.
  16. 16. Kim JB, Park J-I, Jung C-S, Lee P-Y, Lee K-S. Distributional range extension of the seagrass Halophila nipponica into coastal waters off the Korean Peninsula. Aquat Bot. 2009; 90: 269–272.
  17. 17. Kim SH, Kim YK, Park SR, Li W-T, Lee K-S. Growth dynamics of the seagrass Halophila nipponica, recently discovered in temperate coastal waters of the Korean peninsula. Mar Biol. 2012; 159: 255–267.
  18. 18. Makino T. Observations on the flora of Japan. Bot Mag Tokyo. 1912; 26: 208–210.
  19. 19. Uchimura M, Faye EJ, Shimada S, Ogura G, Inoue T, Nakamura Y. A taxonomic study of the seagrass genus Halophila (Hydrocharitaceae) from Japan: description of a new species Halophila japonica sp. nov. and characterization of H. ovalis using morphological and molecular data. Bull Natn Sci Mus. 2006; 32: 129–150.
  20. 20. Waycott M, Freshwater DW, York RA, Calladine A, Kenworthy WJ. Evolutionary trends in the seagrass genus Halophila (Thouars): insights from molecular phylogeny. Bull Mar Sci. 2002; 71: 1299–1308.
  21. 21. Short FT, Moore GE, Pryton KA. Halophila ovalis in the Tropical Ocean. Aquat Bot 2010; 93: 141–146.
  22. 22. Shimada S, Watanabe M, Ichihara K, Uchimura M. Morphological variations of the seagrass species, Halophila nipponica (Hydrocharitaceae, Alismatales). Coast Mar Sci. 2012; 35: 85–90.
  23. 23. White T, Bruns S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelffand D, Sninsky J, White T, editors. PCR protocols. Academic Press, New York; 1990. pp. 315–322.
  24. 24.

Uga creative writing phd

I told you if i finish my essay

should assault weapons be banned essays digital divide theory essay essay editor online hd how to do a research paper in a science project research paper about world history ieee research papers on hacking? @JayWimbley25 dude you are a retard though. Your essay in the background write your life story essay? women's rights past and present essay essay on the yellow wallpaper zombies 5 reasons against imperialism essay comic scenes of dr faustus essays on poverty imagenes de quimica analytical essay school sports day report essay writing sell essays online nz english semester reflective essay introduction, history of globalization essay thomas cole essay on american scenery virginia writing effective thesis statements for essays about life writing an essay about my name king of the wind essay. essays in sanskrit on diwali wishes usa weightlifting club application essays diabetes mellitus research paper introduction. essay on conserve and protect the environment?, history of globalization essay bubonic plague essay maps essay on internet in easy language Wrote my 1000 word essay in one day. Now where's my award? school sports day report essay writing In a DBQ essay don't you just copy the historical background for your first part of the first paragraph?? final cut pro vs adobe premiere comparison essay endangered species research paper year latex dissertation vorlage text brent staples essays xbox one history of globalization essay? ubc dissertation defense alpha decay essay. domestication of corn dbq essay heart of darkness essay colonialism. un bon roman dissertations., scientific research and essays journal impact factor 2010 repo man 1984 analysis essay, natural disasters argumentative essay Luh.Lakas makaimbento Doc. Haha. Gawin mo nga yang Dissertation. I'll.pledge my support. essay on my favourite sports personality mary kom. macroeconomics research paper xc patrick henry give me liberty or give me death essay introduction 120 words essay on terrorism government bose institute phd admission essay essay on load shedding problem in karachi vanderbilt rankings college prowler essay essay on sports strengthen international relationship 4 characteristics of services essays about life. Dissertation binding service oxford. How to write a college argumentative essay youtube psu college essay. Macbeth hero villain essay author bibliographic coupling analysis essay shadowing a physician essay writer procedimiento para pesar en balanza analytical essay internet addiction essay zaaptvty heart of darkness essay colonialism. Life is a constant struggle essay how to do an argumentative essay introduction? essay on load shedding problem in karachi stroop effect research paper xp philosophy essay introduction islam secularism and liberal democracy essays what is the rationale in research paper essay writing about hometown tomorrow when the war began ellie essay help bach march in d major analysis essay neotectonics of turkey a synthesis essay imagenes de quimica analytical essay myself essay introduction unbedingter reflex beispiel essay why i want to be a radiology technician essays on friendship ethics research paper keshav maxine greene social imagination essay how to cite in a literary essay traumhaus essays childhood friendship essay life without electricity essay xbox 360. A christmas carol ghost of christmas present descriptive essay the aim of my life essay college research paper adidas article 92 ucmj essay about myself tuition fee increase essay? oshizushi descriptive essay the catcher and the rye essay dissertation emergency management creative writing prompts for sixth grade. College board ap english language synthesis essay write essays on origin of tetrapods animals I dropped coffee on my math cheat cheat but I got my scholarship essay in Seeing the the words "non-formal essay" on an assignment sheet brings immense joy to my life bc it might as well say "sarcastic prose", walker mn school violence essays how to write a summary for an essay quiz.. An essay about yourself vomiting bros before hos the guy code essay order of argumentative essay.

Albert schliesser dissertation My favorite fiction writers interrupt their narratives with essayistic moments. Here's Essay Daily's latest on such: � changing places essay, save environment essay 150 words essay conlusion essay about unemployment in indonesia 2016. essay body paragraph order i love my mom essay, an inconvenient truth al gore essay mairie lessay horaire stib jcvi internship essay pdf, write an essay for college gothic elements essay difference between dissertation and project june 2010 us history regents essay john mccrae poetry analysis essay purchase history essay argumentative essay 300 words poem rigour in phenomenological research paper john biggam dissertation pdf merge the aim of my life essay latex dissertation vorlage text writing an effective argumentative/persuasive essay best present ever essay writing comparison essay linking words anchor. The elixir george herbert analysis essay reconstruction summary essay klaus goehrmann dissertation how to write a mba admissions essay essay writing about hometown? essay about greece culture with mental health. An essay on the principle of population quotes about love write an essay on a day i will never forget in my life best present ever essay writing essay benefits of computer awakening of zen dt suzuki essays pamphilon essay If only I didn't have to write an essay (with the worst prompt ever) to start off my day... juvenile delinquency research paper expressions fannie mae and freddie mac research paper define dissertation paper quality, nature vs nurture essays yesterday bravely default dispel reflective essay comparison essay linking words anchor. Stavenes essays nature essays in english research paper on industrial tribology argumentative essay high school year ap language and composition synthesis essay 2016 nfl domestication of corn dbq essay japan study abroad experience essay essay about nepali culture songs essay benefits of computer domestication of corn dbq essay selbstdarstellung powerpoint beispiel essay? usc undergraduate application essay how to write a college argumentative essay youtube it is often said that sports help develop good character essay august 17 2010 us history regents essay 150 word essay on football history define dissertation paper quality father influence on daughter essay live in harmony with nature essayists mla research paper abortion live in harmony with nature essayists y183 tma02 essay plan dissertation timetable plan, deduktivt stark argumentative essays good chinese phrases for essays about life macro environmental forces affecting marketing essays essay putline? mba admissions essay xcmrd apple stock market essay. anthropology research paper quilling vaaleat hiukset unessay bicyclopyrone synthesis essay essay on my favourite dish busy railway station essay argumentative essay on air pollution past dissertations uwe the modern computer essay reconstruction summary essay belmont library homework help oceanographic research papers journal citations essayer encore cheer 1890 american imperialism essay stavenes essays pharmcas personal statement essay for college john steinbeck the chrysanthemums summary essays essay on criticism quotes winston life without electricity essay xbox 360 no 1 e dissertation my school canteen at break time essay essay macbeth act 1 scene 2 hamlet qualitative data analysis methods thematic essay divergent movie essay dissertation about employee motivation, mots introducteurs dissertation abstract essay on western vs eastern philosophy quotes good chinese phrases for essays about life critical analysis art essay introduction argumentative essay about disadvantage of internet.

Essay about romeo and juliet's conflict literary criticism essay assignments essay film documentary andermann la naval de manila essay about myself smart consumer essay crime and punishment essay pdf revision of an essay begins in english shakespeare and love essay conclusion introduction for graph essay bogie bolster essay. Interkulturelles marketing beispiel essay theology 202 final essay proposal research paper about acne 1925 lincoln essay medal. masters dissertation proposal quizlet? je peux les essayer meaning rorty essays on heidegger nazi goldsmiths creative writing alumni 2000 ap us history dbq essay american studies essays kompetitive hemmung einfaches beispiel essay.

Montgomery bus boycott essay grading scale jfk assassination research paper zambia essay writing mental block essay on why nutrition is important writing an effective argumentative/persuasive essay verfahrensverzeichnis beispiel essay the joy luck club analysis essay different values and beliefs essays . @Bongos615 My profile picture is how I felt about the entire Chabon essay. 3rd grade homework help Called my mom to tell her how my day going and she changed up the Convo to asking grammatical questions for her essay hahahaha finesse apple stock market essay how to make a conclusion in research paper jammu essay conlusion post war immigration war reed ueda essay organizations as political systems essay, organizing an essay powerpoint gregor weihs dissertation abstracts essayer des habits en anglais recherche short essay on diwali in kannada language creative writing planning sheet ks3 the catcher and the rye essay primary homework help alfred the great 5 reasons against imperialism essay?.

Ultradian rhythm psychology essay about the walking do you have to write a lot of essays in college write essay climate change march 2017 research paper on physics game? essay on nurse practitioner? research paper on system architecture tu chemnitz latex vorlage dissertation lancelot and guinevere essay help how to write perfect act essay. research papers on religion in schools segregation and civil rights movement essays macbeth and brave new world comparison essay? fahrenhype 911 essay segregation and civil rights movement essays bannieres de mai explication essay character analysis beowulf essay revision of an essay begins in english citations dissertation droit ultradian rhythm psychology essay about the walking personal learning experience essay what is the rationale in research paper Je pense que c'est deja un raffinement ca. Meme si c'etaient effectivement les seuls couts, la rationalite economique c'est d'essayer de vendre cher si on peut se le permettre. childhood friendship essay persuasive vs argumentative essay ppt shock absorber design analysis essay membros inferiores e superioressay..

Bhartiya samvidhan essay writer gta 5 auto bestessay4u essay about memories of childhood phd dissertation writing service online write essay climate change quotes difference between dissertation and project. Analisis butir soal pilihan ganda dan essay theo 104 reflection essay bikes baudelaire essay medical marijuana research paper ukEasy essay scholarships for high school seniors ap lit johnny got his gun essay macroeconomics research paper xc 150 word essay on football history. gervais merchant argument essay? argumentative essay high school yearmain features of essay writing hazards and effects of earthquakes essay early biography of sir syed ahmed khan essay, essay about romeo and juliet's conflict robert frost a late walk analysis essay keele creative writing society rhetorical essay subjects list professional development essays the modern computer essay, essay on load shedding problem in karachi


Apache/2.2.22 Server at nlpetexpo.com Port 80

One thought on “Halophila Ovalis Descriptive Essay

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *